

CARACTERIZAÇÃO E IDENTIFICAÇÃO DE BACTÉRIAS ENDOFÍTICAS DE *MELISSA OFFICINALIS* COM CAPACIDADE DE PRODUÇÃO DE ANTIBIOTICOS

Izadora Silva de Melo bolsista (PIBITI/CNPq/Universidade Estadual de Ponta Grossa, <u>izadora.smelo@gmail.com</u>, Marcos Pileggi, <u>mpileggi@uepg.br</u>, Luiz Ricardo Olchanheski "Iricardobio@gmail.com" Iricardobio@gmail.com>

Universidade Estadual de Ponta Grossa/ Departamento de Biologia Estrutural, Molecular e Genética

Ciências Biológicas, Microbiologia Aplicada

Palavras-Chave: Metabólitos secundários, Antimicrobianos, Erva-cidreira, Plantas medicinais.

Introdução

O uso de microrganismos endofíticos como produtores de compostos bioativos nos permite otimizar e potencializar a produção de metabólitos secundários. Esses endófitos se tratam de bactérias ou fungos que residem o interior e o espaço intercelular de plantas, desempenhando um papel de proteção e até mesmo de melhora no desenvolvimento. A aplicação biotecnológica bactérias apresenta grande vantagem pois necessitam de pouca biomassa e menor tempo para secretar metabólitos ativos, quando comparados às plantas. Além disso, a investigação dos metabólitos secundários secretados por estes microrganismos nos possibilita encontrar substâncias antimicrobianas, as quais são de interesse para este trabalho. Há trabalhos em que foi possível isolar e identificar fungos endofíticos da Melissa officinalis, este trabalho busca investigar as bactérias endofíticas e seus metabólitos com potencial biotecnológico.

Problema

Busca de novos compostos com potencial antimicrobiano, com o objetivo de aplicação para bactérias multirresistentes.

Este trabalho possibilitou o isolamento de cepas bactérias endofíticas com potencial antibacteriano, além de possibilitar um princípio de isolamento e purificação das moléculas de importância farmacológica a partir de extratos obtidos a partir do sobrenadante bacteriano.

Solução e Benefícios

Por se tratar de microrganismos, a manipulação se torna menos morosa e com baixo custo, isso se deve pela necessidade de condições simples de crescimento e desenvolvimento. Assim, ao encontrar uma nova substância antimicrobiana torna-se possível buscar por novas opções de tratamentos para tantas doenças causadas bactérias e que já apresentam inúmeras resistências.

Potencial de Mercado e Diferencial Competitivo

A Melissa officinalis se trata de uma planta amplamente conhecida e de fácil cultivo, a qual já possui inúmeras comprovações de sua atividade antimicrobiana, antitumoral e antiparasitária. Dessa forma, ao utilizar microrganismos endofíticos para obter estes compostos bioativos, mais especificamente as bactérias endofíticas pode-se facilitar os estudos e a obtenção dessas substâncias. Adicionalmente, foi possível o estabelecimento de um processo de purificação parcial da molécula com potencial antimicrobiano.

Considerações Finais

Já foi possível encontrar uma forma efetiva de obter os extratos dos microrganismos em estudo, através da escolha do solvente e que as bactérias a serem identificadas produzem compostos antimicrobianos. No entanto, a turbidez de alguns extratos obtidos limitou a metodologia escolhida para a determinação da concentração inibitória mínima, gerando resultados inconclusivos. Espera-se que através do genoma bacteriano, seja possível elucidar os possíveis metabólitos produzidos pelas 2 bactérias em estudo.

Estágio de Desenvolvimento da Tecnologia

O trabalho se encontra em TRL/MRL 2, pois já se encontram indícios das características dos metabólitos das bactérias em estudo, assim se tem pré-estabelecido uma forma como obter os extratos bacterianos. Além disso, nos confirma que microrganismos endofíticos são capazes de produzir compostos antimicrobianos.

Agradecimentos

Agradeço a CNPq pelo apoio financeiro, aos professores Marcos Pileggi e Luis Ricardo Olchanheski pelo incentivo a pesquisa.

Contato Institucional

Universidade Estadual de Ponta Grossa Departamento de Farmácia Izadora.smelo@gmail.com (42)999182617

Figura 1. Halo de inibição formado pelo extrato bacteriano

